今天鞋百科给各位分享神经细胞兴奋的标准是的知识,其中也会对可兴奋细胞接受刺激的反应类型(可兴奋细胞接受刺激的反应类型为)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
可兴奋细胞接受**的反应类型
当机体、**、组织或 细胞受到**时,功能活动由弱变强或由相对静止转变为相对活跃的反应过程或反应形式,称为兴奋。神经细胞、肌细胞和部分腺细胞很容易接受**并发生明显的兴奋反应。特别是这些细胞由于具有较多的电压门控钠通道或电压门控钙通道,受到**后首先发生的共同反应就是基于这些离子通道激活而产生的动作电位,而后才表现出不同的功能活动形式,如肌细胞通过兴奋-收缩耦联发生收缩,腺细胞通过兴奋-分泌耦联引起分泌,神经细胞出现动作电位在神经纤维上的传导,即产生神经冲动。因此,生理学中常将神经细胞、肌细胞和部分腺细胞这些能够产生动作电位的细胞称为可兴奋细胞。对这些可兴奋细胞而言,兴奋性又可定义为细胞接受**后产生动作电位的能力,而动作电位的产生过程或动作电位本身又可称为兴奋。实际上,任何活细胞都具有兴奋性。所谓可兴奋细胞,是因为它们对电**较敏感,能以动作电位作为其兴奋性的标志。其他细胞对电**不甚敏感,不能产生动作电位,但它们对于电**以外的其他**可能很敏感。所以,用产生动作电位的能力作为兴奋性、用动作电位本身作为兴奋的定义是相对狭义的。
大学理工类都有什么专业
1、通信工程
通信工程专业(Communication Engineering)是信息与通信工程一级学科下属的本科专业。该专业学生主要学习通信系统和通信网方面的基础理论、组成原理和设计方法,受到通信工程实践的基本训练,具备从事现代通信系统和网络的设计、开发、调测和工程应用的基本能力。
2、软件工程
软件工程是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及程序设计语言、数据库、软件开发工具、系统平台、标准、设计模式等方面。
在现代社会中,软件应用于多个方面。典型的软件有电子邮件、嵌入式系统、人机界面、办公套件、操作系统、编译器、数据库、游戏等。同时,各个行业几乎都有计算机软件的应用,如工业、农业、银行、航空、**部门等。
3、电子信息工程
电子信息工程是一门应用计算机等现代化技术进行电子信息控制和信息处理的学科,主要研究信息的获取与处理,电子设备与信息系统的设计、开发、应用和集成。
电子信息工程专业是集现代电子技术、信息技术、通信技术于一体的专业。
本专业培养掌握现代电子技术理论、通晓电子系统设计原理与设计方法,具有较强的计算机、外语和相应工程技术应用能力,面向电子技术、自动控制和智能控制、计算机与网络技术等电子、信息、通信领域的宽口径、高素质、德智体全面发展的具有创新能力的高级工程技术人才。
4、车辆工程
车辆工程专业是一门普通高等学校本科专业,属机械类专业,基本修业年限为四年,授予工学学士学位。2012年,车辆工程专业正式出现于《普通高等学校本科专业目录》中。
车辆工程专业培养掌握机械、电子、计算机等方面工程技术基础理论和汽车设计、制造、试验等方面专业知识与技能。
了解并重视与汽车技术发展有关的人文社会知识,能在企业、科研院(所)等部门,从事与车辆工程有关的产品设计开发、生产制造、试验检测、应用研究、技术服务、经营销售和管理等方面的工作,具有较强实践能力和创新精神的高级专门人才。
5、土木工程
土木工程(Civil Engineering)是建造各类土地工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养、维修等技术活动,也指工程建设的对象。
即建造在地上或**、陆上,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水排水以及防护工程等。
土木工程是指除房屋建筑以外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作及其完成的工程实体。
专业老师在线权威答疑 zy.offercoming***m
神经细胞由兴奋转变为静息需要atp吗
由兴奋转变为静息需要atp。
首先一个基本点:细胞外Na+浓度高,细胞内K+浓度高,神经兴奋是Na+通道开放,Na+顺浓度梯度进入细胞,然后K+通道也开放,K+也顺浓度梯度到细胞外,这两个都不消耗ATP。兴奋完成后,要维持细胞内高K+浓度,细胞外高Na+浓度,就必须把Na+、 K+逆浓度梯度转运,主动转运自然需要ATP。
神经元之间突触小泡里的神经递质传递体现了细胞膜什么的结构特点啊
神经元之间突触小泡里的神经递质传递体现了:1、神经元之间兴奋地传递只能是单向的,只能由突触前膜释放,然后作用在突触后膜(树突膜、细胞体膜)上。2、神经递质通过胞吐的方式传到突触间隙。3、细胞体膜上有受体(糖蛋白)哎...久不想就只想到这些了...下面的别的了1、突触小泡从高尔基体来的,由线粒体为高尔基体提供能量2.、神经递质跟受体接触后会被反弹开,在突触间隙被酶分解掉!神经递质没有进入下一个神经元的!!而且一定会被分解掉,否则下个神经元会持续兴奋!!3、细胞膜的结构特点是一定的流动性,功能特点是选择透过性...先发了吧...
试述心室肌细胞一次兴奋后,其兴奋性的变化及机制
心室肌细胞的动作电位由除极化过程和复极化过程所组成,共分为五个时期:
1、除极过程(0期):膜内电位由静息状态时的-90mV上升到-20mV~+30mV,膜两侧由原来的极化状态转变为反极化状态,构成了动作电位的上升支,此期又称为0期。历时仅1~2ms。其正电位部分成为超射。
形成机制:当心室肌细胞受到**产生兴奋时,首先引起钠离子通道的部分开放和少量钠离子内流,造成膜部分计划,当去极化到阈电位水平(-70mV)时,膜上钠离子通道被激活而开放,出现再生性钠离子内流。于是钠离子顺电-化学梯度由膜外快速进入膜内,进一步使膜去极化、反极化,膜内电位由静息时的-90mV急剧上升到+30mV。决定0期除极化的钠离子通道是一种快通道,激活迅速、开放速度快,失活也迅速。当膜去极化到0mV左右时,钠离子通道就开始失活而关闭,最后终止钠离子的继续内流。
2、复极过程:当心室肌细胞去极化达到顶峰后,立即开始复极,但复极过程比较缓慢,可分为4期:
1)快速复极初期(1期):心肌细胞膜电位在除极达到顶峰后,有+30mV迅速下降至0mV,形成复极1期,历时约10ms,并与0期除极构成了锋电位。
形成机制:钠离子的通透性迅速下降,钠离子内流停止。同时膜外钾离子快速外流,形成瞬时性钾离子外向电流,膜内电位迅速降低,与0期构成锋电位。
2)平台期(2期):表现为膜电位复极缓慢,电位接近于0mV水平,故成为平台期。此期历时100~150ms。此期为心室肌细胞区别于神经或骨骼细胞动作电位的主要特征。
形成机制:目前认为主要是由于钙离子缓慢持久地内流和少量钾离子缓慢外流造成的。电压钳研究表明,心室肌细胞平台期,外向电流是由钾离子携带的。静息状态下,钾离子通道的通透性很高,在0期除极化过程中,钾离子的通透性明显下降,钾离子外流大大减少,除极结束时,钾离子的通透性极其缓慢地、部分地恢复。平台期内向电流主要是由钙离子负载的。现已证明,心肌细胞膜上有一种电压门控式慢钙通道,当膜去极化到-40mV时被激活,要到0期后才表现为持续开放。钙离子顺其浓度梯度向膜内缓慢内流使膜倾向于去极化,在平台期早期,钙离子的内流和钾离子的外流所负载的跨膜正电荷量等,膜电位稳定于1期复极所达到的0mV水平。随后,钙离子通道逐渐失活,钾离子外流逐渐增加,出膜的正电荷量逐渐增加,膜内电位于是逐渐下降,形成平台晚期。
3)快速复极末期(3期):继平台期之后,膜内电位由0mV逐渐下降到-90mV,完成复极化过程。历时约100~150ms。
形成机制:在2期之后,钙离子通道完全失活,内向电流(钙离子内流)终止,而膜对钾离子的通透性又恢复并增高,钾离子外向电流迅速增强,膜电位迅速回到静息电位水平,完成复极化过程。3期复极化的钾离子外流,使膜内电位向负的方向转化过程也有类似于0期钠离子通道再生性除极过程。即随着钾离子外流膜内电位向负的方向转化,钾离子的外流也愈快,知道复极化完成。另外,在此过程中,由于心室各细胞复极化过程不一样,造成复极化区和未复极化区之间的电位差,也促进了未复极化区的复极化过程,所以3期复极化发展十分迅速。
4)静息期(4期):此期是膜复极化完毕后和膜电位恢复并稳定在-90mV的时期。
形成机制:由于此期膜内、外各种正离子浓度的相对比例尚未恢复,细胞膜的离子转运机制加强,通过钠-钾泵的活动和钙离子--钠离子交换作用,将内流的钠离子和钙离子排出膜外,将外流的钾离子转运入膜内,使细胞内外离子分布恢复到静息状态水平,从而保持心肌细胞正常的兴奋性。