今天鞋百科给各位分享几何技巧8大基本功有哪些的知识,其中也会对初中几何怎么开窍?(初中几何怎么开窍,公式不会运用)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

初中几何怎么开窍?

一、打好基础

公式定理在上课的时候应认真听,在实践运用到几何题中,举一反三,基础扎实了,几何体中运用得也就轻松了。

初中几何怎么开窍?

二、巧用辅助线

不同的图形有不同的辅助线做法,例如三角形是三线合一,平行四边形一般做对角线,练多了就开窍了。

三、多做题

做题的过程中必须自己想出来为止,做完后才能对照答案,查看出自己的不足,熟能生巧。小编也是通过做题培养几何思维的。

扩展资料:

初中学几何的方法与技巧

1、对基础知识的把握一定要牢固,在这个基础上我们才能谈如何学好的新问题。例如在证实相似的时候,假如利用两边对应成比例及其夹角相等的方法时,必须注重所找的角是两边的夹角,而不能是其它角。

在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。像这样的细节必须在平时就要引起足够的重视并且牢固把握,只有这样才是学好几何的基础。

2、熟悉解题的常见着眼点,常用辅助线作法,把大新问题细化成各个小新问题,从而各个击破,解决新问题。

怎样学好数学几何

学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好看,又不好学”。其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的。

第一要学好概念。首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映。注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质……

第二要学好几何语言。几何语言又分为文字语言和符号语言,几何语言总是和图形相联系。

第三要进行直观思维。即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力。

第四要富于想像。有的问题既要凭借图形,又要进行抽象思维。比如,几何中的“点”没有大小,只有位置。现实生活中的点和实际画出来的点就有大小。所以说,几何中的“点”只存在于大脑思维中。“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?直线也只存在于人们的大脑思维中。

第五要边学习、边总结、边提高。几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结。比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线。

同学们只要认真学习,注意听讲,勤于思考,**完成作业,是一定能学好几何的。

上课一定要认真听讲,当堂学的知识一定当堂理解了,认真对待老师留的作业,不明白得赶紧问。
定理公式不用死背,点一定理解,会运用。

学好立体几何的关键有两个方面:
1、图形方面:不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力是非常重要的。
2、语言方面:很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话:
几何语言最讲究言之有据,言之有理。也就是说没有根据的话不要说, 不符合定理的话不要说。
至于怎样证明立体几何问题可从下面两个角度去研究:
1、把几何中所有的定理分类:按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。
如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看
成是两条直线平行的判定定理。
又如如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理
又是两条直线平行的判定定理。这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线
和平面垂直,可以用下面的定理:
(1)直线和平面垂直的判定定理
(2)两条平行垂直于同一个平面
(3)一条直线和两个平行平面同时垂直
2、明确自己要做什么:
一定要知道自己要做什么!在证明之前就要设计好路线,明确自己的每一步的目的,学会大胆假设,仔细推理。

做数学几何题有什么技巧

我本人非常喜欢数学,也看过一些关于平面几何的书籍,对于你的问题,我有以下建议。
1.多找一点题找做几何的感觉。
2.总结出一套思路。我上初中的时候不知道该说是好还是不好,仿佛中考就是完完全全用来将老师整理出来的方法套用公式一般地用在上面的基础练习一样。连脑子都不用动。当然,这也许只是极个别情况。
3.双向地、“广度”与“深度”并用地探寻。初中平面几何说到底考得就是:
①相似与全等;
②平行及其性质(以及几个常见的四边形的性质);
③常见的对称性的应用(如圆的垂径定理、等腰三角形三线合一等等)。
将条件向前发展一点,再将求证“向后”发展一点,寻求二者的汇合点。
总:还剩20天,你的时间并不多,但也并不少。我个人觉得你之所以看到平几没感觉,是因为很小的时候缺乏这种锻炼,但现在的你接受能力应该比小的时候强,通过一定的练习,将中考的平面几何拿下是没有什么大问题的。然而,如果说,你花了10天,将中考数学提升了10分,却因此耽搁了其他课程的巩固而比期望少20分,就不值当了。同时,将心态调好,你要知道,有许许多多初中生平面几何水平很低,你没什么可怕的??找最实用的策略,谋求中考总分的最高才是当务之急。

另外,我还有一点想说:高中是不学平面几何的,于是超过98%的学生都会从此和平面几何绝缘。然而平面几何实在是太优美了,有那么一些人(包括我)实在不愿丢下她。她的优美不仅体现在几何外观上的美,还有在严谨的推理下思维美。
要是你闲,买一本(或想方设法得到一本)《近代欧式几何学》来看,真的是非常享受。

怎样学好初中几何啊?急!

第一,学会把条件全部标在图上
第二,脑子里要学会转动、平移、拆分图形,画在图上的东西是死的,但在你脑子里不能是死的
第三,学会逆向推导,比如要证明A我需要证明什么,然后一步步向条件推导
第四,掌握规律,比如要证明边相等就找全等三角形或对应角相等,见到中线就延长一倍等等
第五,会证明定理,定理光记住肯定是不行的,更何况刚刚三角形还没多少定理,一个图形的性质越少其实越容易,三角形弄来弄去就那么几条
第六,问问题的时候最好让别人引导你,被一下子给出答案,那样没什么用
第七,心理问题,几何是古代欧洲一群无聊的人想出来打发时间的游戏,所以你可以不用太恐惧他

学好初中几何的好方法??

作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。使好多学生在做几何题时感到无从下手,话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。我从自己的经验来谈谈这些问题。实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想.
首先.概念是最基础的知识,这是必背并烂熟于心的.做几何就像在做游戏,游戏规则就是几何的基本概念,定理,公理等,遵循规则就会胜利,违背规则就会出错。所以必须会被概念,定理,公理。有人认为只要理解不用背就可以,其实不然,在做很多题时,有的学生就是因为感念不清而出错。就是死记硬背了,就是不理解,只要老师用到这些知识,也可以明白。
其次,要学会使用几何语言, 几何语言的表现形式有三种:一是图形语言,就是我们研究的几何图形。如角、三角形、梯形等。二是文字语言,就是概念、定理、公理、或一个几何题用文字来表现的语言。三是符号语言:如:“//”“⊥”“△”等。这三种语言在几何中通常是并存的,有时又互相渗透,互相转化。教学中要对学生加强这三种几何语言的基本训练,要求每一位学生不仅能熟练地表达每一种语言,而且能根据解题或证题的需要,准确地将其中一种语言“翻译”成其它语言形式。对于几何语言的学习,要严谨、准确,尤其是三种几何语言的“互译”要熟练掌握,对于图形、文字、符号的使用要融汇贯通,这是学好几何的关键。
再者,要学会画出准确的几何图形,几何图形是学习研究的主要对象,画准图形是解(证)题的基础。画出正确符合题意的图形,往往会给学生留下深刻直观的印象,也给解(证)题带来清晰的思路。相反,不准确的图形,会给思考问题,解决问题带来错觉,甚至把思维引入歧途,把显而易见的问题变得无法入门。所以,要求学生在学习中,严格要求自己,认真地画出规范、准确的几何图形,千万不能怕麻烦或为了省事,不用学习用具而随便、徙手画图。
最后,要学会正确的推理,几何的推理证明同代数相比,思维方式有明显区别,几何借助图形思考,言必有据。因此,学习几何推理证明,要注意以下几点:
(1)扎实认真地学好几何基础知识,是学好几何推理证明的前提条件,定义、公理、定理、推论是几何推导的理论依据。所以要深刻理解其含义,彻底弄清其题设和结论。只有这样,才能灵活、正确运用它们来推导证明,解决问题。
(2)要练好三项基本功:正确地识图与作图;会使用三种几何语言的互相“翻译”,具有准确熟练地进行口头、书面的语言表达。
(3)加强在学习中对证明推导的基本结构和格式的训练。
(4)在老师的指导下,注意对证明方法的训练。几何证明方法一般有两种:分析法和综合法,这两种方法结合起来,称为“逆推顺证”,即用分析法寻找证题思路,用综合法书写证题过程。
在初中几何教学或学习中,如果让每个学生都做好了以上几点,对几何的学习就会轻松有趣,事半功倍,就能真正学好几何这门课。