今天鞋百科给各位分享指数的拐点怎么算的知识,其中也会对求极值,拐点,要过程,谢谢!(极值点是拐点的例子)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

求极值,拐点,要过程,谢谢!

如上图所示。

高数里的驻点极值点,拐点的区别,怎么计算

一、位置不同:

求极值,拐点,要过程,谢谢!

驻点极值点是x轴上的点,拐点是曲线上的点。

驻点及一阶导不存在的点有可能是极值点。

二阶导为0的点及二阶导不存在的点有可能是拐点。

二、作用不同:

拐点可能是二阶导数为0或二阶导数不存在的点。求出所有二阶导数为0或不存在点,再进一步分析。

极值点可能是一阶导数为0的点,也可能是一阶导数不存在的点。所以求极值点的时候,找出所有一阶导数为0的点和不可导点。对这些点进行进一步的分析。

驻点是f'(x)=0的点是极值点;原函数在x=0点导数不为0,不是驻点。

三、意义不同:

极值点不一定是驻点,驻点也不一定是极值点。

驻点关注的是,一阶导数的值为0,不关注函数的单调性变化。

若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

扩展资料:

极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。

极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)

参考资料来源:百度百科-极值点

高数里的驻点极值点拐点的区别怎么计算?

驻点不一定是极值点,如z=xy,(0,0)是驻点,但不是极值点。

极值点也不一定是驻点,如z=√(x²+y²),(0,0)不是驻点,但是极值点。

驻点满足一定条件时,才是极值点,有一个充分条件定理。

驻点的定义:一阶导数为0的点,就是驻点。所以求驻点,就是求一阶导数为0的点。至于不可导点,当然就不可能是驻点了。

极值点的定义:在某点的一个邻域内,该点的函数值是最大值或最小值,则该点是个极大值点或极小值点。极值点可能是一阶导数为0的点,也可能是一阶导数不存在的点。所以求极值点的时候,找出所有一阶导数为0的点和不可导点。对这些点进行进一步的分析。注意一点,一阶导数为0或一阶导数不存在只是极值点的一个必要条件。而不是充分条件。所以不能只求出一阶导数为0或不可导点,就不再进一步分析,直接认定这些点是极值点。

拐点,是函数凹凸变化的分界点。拐点可能是二阶导数为0或二阶导数不存在(含一阶导数不存在而导致二阶导数不存在的情况)的点。求出所有二阶导数为0或不存在点,再进一步分析。

什么是函数的拐点?怎样求拐点?

若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

(1)求f''(x);

(2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;

(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

扩展资料

必要条件,设函数f(x)在点

的某领域内具有二阶连续导数,若(

,f(

))是曲线的拐点,则

,但反之不成立。

第一充分条件

直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。

设函数f(x)在点

的某邻域内具有二阶连续导数,若

的两侧

异号,则(

,f(

))是曲线y=f(x)的一个拐点;若

的两侧

同号,则(

,f(

))不是曲线的拐点。

高数中什么是拐点

在数学领域是指,凸曲线与凹曲线的连接点。
当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
希望对你有帮助,O(∩_∩)O~