今天鞋百科给各位分享海浪谱的作用有哪些的知识,其中也会对什么是海浪频谱?(海浪的谱峰频率)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

什么是海浪频谱?

在海浪谱中,风浪频谱得到最广泛的研究,因为它的应用最广,也最易于得到,但尚无基于严格理论的风浪频谱。通常p为5~7,q为2~4,在正量A和B之内。除了数值常数外,还包含风要素(如风速、风时和风区)或浪要素(如特征波高和周期)作为参量,故谱的形状随风的状态或对应的浪的状态而变化。上述两项的乘积代表的谱,在ω=0处为0,在0附近的值很小,ω增加时,它骤然增大至一个峰值,然后随频率的增大而迅速减小,在ω→∞时趋于0。这表明谱的频率范围在理论上虽为0~∞,但其显著部分却集中在谱峰附近。海面上存在的许多波,其显著部分的周期范围很小,恰和理论结果相对应。随着风速的增大,谱曲线下面的面积(从而风浪的总能量或波高)增大,峰沿低频率方向推移,表明风浪显著部分的周期增大。

从波面的记录估计谱,是获得海浪频谱的主要途径。习惯上将谱的估计方法分为相关函数法和快速傅氏变换算法两种。在电子计算机上计算时,后者比前者更节约时间。20世纪70年代,开始引用最大熵等方法。依此可自不多的资料估计出分辨率较高的谱,它适用于非平稳的海浪状态。

在海浪研究中已提出的频谱很多常采用的皮尔孙—莫斯科维奇谱,是60年代中期提出的,是在对充分成长的风浪记录进行谱估计和曲线的拟合时得到的,已为多数观测所证实。

60年代末,按照“北海联合海浪计划”(Jonswap),对海浪进行了系统的观测,提出了一种频谱,其中包括分别反映能量水平、峰的频率尺度和谱形在内的5个参量。这种谱表示风浪处于成长的状态,它具有非常尖而高的峰。对Jonswap谱分析的结果表明,风浪的能量主要通过谱的中间频率部分传递,然后借波与波之间的非线性相互作用,再分别向谱的高频和低频部分传递。反映这种能量交换的谱,具有稳定的形式。利用此特性,可将谱随风的变化转换为其中的参量随风的变化,从而提供另一种海浪计算或预报的方法。

什么是海浪频谱?

有一种半经验的方法,它假定海浪的某些外观特征反映其内部结构,由观测到的波高和周期间的关系,可导出海浪谱。早在50年代初提出的纽曼谱和工程中常使用的布雷奇奈德尔谱,都属此类,前者p=6,q=2;后者p=5,q=4。有些苏联作者采用具有前述形式的频谱,然后由观测资料确定其中的常数和参量。

中国学者于50年代末至60年代中期,尝试自风浪能量的摄取和消耗出发推导出谱,其中包括用风要素作为参量,从而描述谱相对于风时和风区的成长。由这些谱计算波高和周期等要素比较方便,但推导中涉及的能量计算,仍是半经验性的。

海洋对气候的影响主要表现在哪些方面

海洋是全球气候系统中的一个重要环节,它通过与大气的能量物质交换和水循环等作用在调节和稳定气候上发挥着决定性作用,被称为地球气候的“调节器”。占地球面积71%的海洋是大气热量的主要供应者。如果全球100米厚的表层海水降温1摄氏度,放出的热量就可以使全球大气增温60摄氏度。海洋也是大气中水蒸气的主要来源。海水蒸发时会把大量的水汽从海洋带入大气,海洋的蒸发量大约占地表总蒸发量的84%,每年可以把36000亿立方米的水转化为水蒸气。因此,海洋的热状况和蒸**况直接左右着大气的热量和水汽的含量与分布。同时,海洋还吸收了大气中40%的二**碳,而二**碳被认为是导致气候变化的温室气体之一。

另一方面,气候变化对海洋也造成了巨大影响。气温上升导致海平面和海水温度随之升高,而海洋对二**碳的过度吸收则引发了海水酸化,这些都对海洋和海岸生态系统造成破坏,被认为是珊瑚白化、死亡、小岛屿遭淹没等一系列问题的根源。以印尼为例,该国海洋事务和渔业部长表示,在未来几十年里印尼将有很多岛屿因为海平面上升而沉入海中。而澳大利亚昆士兰大学环境学家奥维也发表报告称,如果不马上行动,地球上的珊瑚礁将在本世纪末全部消失。此外,气候变化还使海洋的气候模式与洋流发生变化,从而加大了海洋灾害的程度。尤其是海水酸化后发生倒灌,进入陆地后会对河口、入海口等生态系统造成重大影响。

海洋性气候是地球上最基本的气候类型。总的特点是受**影响小,受海洋影响大。在海洋性气候条件下,气温的年、日变化都比较和缓,年较差和日较差都比**性气候小。春季气温低于秋季气温。全年最高、最低气温出现时间比**性气候的时间晚;最热月在8月,最冷月在2月。

影响海洋气候的主要因素是太阳辐射、海洋环境和大气环流。太阳辐射是海水和大气增温的主要能源,是大气中许多物理过程的基本动力。海面是低层大气的下垫面,海水比热大,对太阳辐射的反射率小,加上海洋辽阔,体积大,因而海洋成为地球的一个巨大的热量和水分的贮存库。到达地球表面的太阳辐射能,大约一半被海水吸收和贮存,然后海水又以长波辐射、潜热和感热的形式向大气输送热量,推动大气运动。海洋在水分循环中向大气提供大量水分。海陆分布和海流寒暖等环境因素影响着热量平衡、水量平衡和大气环流,形成各海区气候的差异。大气环流可促进南北之间或东西之间的热量和水分交换,使气候不仅受附近海洋环境的制约,还受其他非海洋环境的影响。

由于海洋巨大水体作用所形成的气候。包括海洋面或岛屿以及盛行气流来自海洋的**近海部分的气候。海洋气候有以下特点:①气温年变化与日变化都很小,在洋面上甚至观测不到日变化。年变化的极值一般比**后延1个月,如最冷月为2月,最暖月为8月。在高纬地区最冷月还可能是3月,最暖月也可能到9月。秋季暖于春季。②降水量的季节分配比较均匀,降水日数多,但强度小。多云雾天气,湿度高。③在热带海洋多风暴,如北太平洋西南部分与中国南海是台风生成和影响强烈的地区。热带风暴是一种十分重要的气象灾害。多数临近海洋的**地区,都具有海洋性气候特征,西欧沿海地区是**上典型的海洋性气候区。

信风(trade
wind)在赤道两边的低层大气中,北半球吹东北风,南半球吹东南风,这种风的方向很少改变,它们年年如此,稳定出现,很讲信用,这是trade
wind在中文中被翻译成 “信风”的原因。

信风的形成与地球环流有关,太阳长期照射下,赤道受热最多,赤道近地面空气受热上升,在近地面形成赤道低气压带,在高空形成相对高气压,高空高气压向南北两方高空低气压方向移动,由于受到地转偏向力的影响,在南北纬30度附近偏转成与等压线平行,大气在此处堆积,**下沉,在近地面形成副热带高气压带。此时,赤道低气压带与副热带高气压带之间产生气压差,气流从副热带高气压带流向赤道低气压带。在地转偏向力影响下,北半球副热带高压中的空气向南运行时,空气运行偏向于气压梯度力的右方,形成东北风,即东北信风。南半球反之形成东南信风。

季风(monsoon),由于**及邻近海洋之间存在的温度差异而形成大范围盛行的,风向随季节有显著变化的风系,具有这种大气环流特征的风称为季风。
季风(monsoon)是由海陆分布、大气环流、**地形等因素造成的,以一年为周期的大范围对流现象。亚洲地区是世界上最著名的季风区,其季风特征主要表现为存在两支主要的季风环流,即冬季盛行东北季风和夏季盛行西南季风,并且它们的转换具有暴发性的突变过程,中间的过渡期实短。一般来说,11月至翌年3月为冬季风时期,6~9月为夏季风时期,4~5月和10月为夏、冬季风转换的过渡时期。但不同地区的季节差异有所不同,因而季风的划分也不完全一致。季风是大范围盛行的、风向随季节变化显著的风系,和风带一样同属行星尺度的环流系统,它的形成是由冬夏季海洋和陆地温度差异所致。季风在夏季由海洋吹向**,在冬季由**吹向海洋。

季风是由太阳对海洋和陆地加热差异形成的。夏季时,由于海洋的热容量大,加热缓慢,海面较冷,气压高,而**由于热容量小,加热快,形成暖低压,夏季风由冷洋面吹向暖**;冬季时则正好相反,冬季风由冷**吹向暖洋面。

夏季吹西南风,冬季吹东北风。这是因为夏季当气流从南半球跨越赤道进入北半球时,由于地球的自转效应,气流会受到一个向右的惯性力作用,这个力就是地转偏向力(科里奥利力)。由于地转偏向力的作用,气流在向北的运行过程中向右偏,形成了西南风。此外,受青藏高原的地形作用及其他因子的影响,东亚的季风比南亚地区更复杂。

海陆风的水平范围可达几十公里,垂直高度达1~2公里,周期为一昼夜。白天,地表受太阳辐射而增温,由于陆地土壤热容量比海水热容量小得多,陆地升温比海洋快得多,因此陆地上的气温显著地比附近海洋上的气温高。陆地上空气柱因受热膨胀,因此海风从每天上午开始直到傍晚,风力以下午为最强。日落以后,陆地降温比海洋快;到了夜间,海上气温高于陆地,就出现与白天相反的热力环流而形成低层陆风和铅直剖面上的陆风环流。海陆的温差,白天大于夜晚,所以海风较陆风强。如果海风**沿山坡上升,常产生云层。在较大湖泊的湖陆交界地,也可产生和海陆风环流相似的湖陆风。海风和湖风对沿岸居民都有消暑热的作用。在较大的海岛上,白天的海风由四周向海岛辐合,夜间的陆风则由海岛向四周辐散。因此,海岛上白天多雨,夜间多晴朗。例如中国海南岛,降水强度在一天之内的最大值出现在下午海风最强的时刻。

台风(飓风)是形成于热带或副热带海面温度在26℃以上的广阔海面上的热带气旋。按世界气象组织定义:热带气旋中心持续风速在12级至13级(即每秒32.7米至41.4米)称为台风(typhoon)或飓风(hurricane),飓风的名称使用在北大西洋及东太平洋;而北太平洋西部(赤道以北,国际日期线以西,东经100度以东)则称为台风,在每年的夏秋季节,我国毗邻的西北太平洋上会生成不少名为台风的猛烈风暴,有的消散于洋上,有的则登上陆地,带来狂风暴雨。
热带气旋(Tropical
Cyclone)是发生在热带或副热带洋面上的低压涡旋,是一种强大而深厚的热带天气系统。它象在流动江河中前进的涡旋一样,一边绕着自己的中心急速旋转,一边随周围大气向前移动。在北半球热带气旋中的气流绕着中心以逆时针方向旋转,在南半球则相反,而这种情况的出现主要是受地球自转所产生的科里奥利力影响。

热带气旋的生命史可分为生成、成熟和消亡三个阶段。其生命期平均为一周左右,短的只有2-3天,最长可达一个月左右。热带气旋的生成和发展需要巨大的能量,因此它形成于高温、高湿和其它气象条件适宜的热带洋面。据统计,除了东南太平洋之外全球的热带海洋上都有热带气旋生成。

台风的形成至少有两个条件:1、比较高的温度
2、充沛的水气。烧开水时,锅底的水会往上升,这是因为锅底的水受热膨胀的原故。空气也是这样,当底层的空气受热后,就会往上升。在气温较高的区域里,大气里发生一些扰动大的空气就会往上升,使地面的气压降低,这时上升区域的外围空气源源不断流入上升区里,因地球自转的关系,使流入的空气像车轮一样转动起来,这就是产生台风的一个原因。当上升空气膨胀变冷后,其中的水气**凝结成水滴,要放出热量,这又助长了低层空气不断上升,使地面的气压降的更低,空气旋转的更加猛烈,这就形成了台风。

什么地方同时具有这两个条件呢?只有在热带的海洋面上。那里的海洋面上的气温非常高,使低层空气可以充分接受来自海洋面的水。那里又是地球上水气最丰富的地方,而这些水气是台风形成发展的主动力。没有这个原动力,台风即使形成也会消散。其次,那里离赤道近,地球自转所产生的偏转力有一定的作用,有利于台风发展气旋式环流和气流辐合的加强。第三、是热带海洋面情况中纬度单纯。因此,同一海域上方的空气,往往能保持较长时间的定常条件,使台风有充分的时间积蓄能量,酝酿**风。在这些条件配合下,只要有合适的触发机制,例如:高空出现辐散气流或南北半球信风在赤道稍北地方相遇等,台风就会在某些热带海洋区域形成并增强。根据统计,在热带海洋,台风常常产生在洋面温度超过26、7度以上的地区。主要在菲律宾以东的海洋、我国南海、西印度群岛以及澳洲东海岸等。这些地方海水温度比较高,也是南北两半球信风相遇之处,因此一年中常有20多次台风诞生。

洋流又叫海流,是指大洋表层海水常年大规模的沿一定方向进行的较为稳定的流动。洋流是地球表面热环境的主要调节者,巨大的洋流系统促进了地球高低纬度地区的能量交换。洋流与所经流经区域之间,也通过能量交换改变其环境特征。围绕副热带高压的洋流成为副热带环流。该环流的中心大约在南北纬25~30的地区。在赤道附近受东北信风和东南信风的共同作用,形成自东向西流动的赤道洋流把南北半球的赤道洋流分割开来。


洋流可以分为暖流和寒流。若洋流的水温比到达海区的水温高,则称为暖流;若洋流的水温比到达海区的水温低,则称为寒流。一般由低纬度流向高纬度的洋流为暖流,由高纬度流向低纬度的洋流为寒流。海轮顺洋流航行可以节约燃料,加快速度。暖寒流相遇,往往形成海雾,对海上航行不利。此外,洋流从北极地区携带冰山南下,给海上航运造成较大威胁。

进入70年代后,全世界出现的异常天气,有范围广、灾情重、时间长等特点。在这一系列异常天气中,科学家发现一种作为海洋与大气系统重要现象之一的“厄尔尼诺(el
nino)”潮流起着重要作用。“厄尔尼诺”是西班牙语的译音,el是阳性定冠词,nino原意是“神童”或“圣明之子”。相传,很久以前,居住在秘鲁和厄瓜多尔海岸一带的古印第安人,很注意海洋与天气的关系。他们发现,如果在圣诞节前后,附近的海水比往常格外温暖,不久,便会天降大雨,并伴有海鸟结队迁徙等怪现象发生。古印第安人出于迷信,称这种反常的温暖潮流为“神童”潮流,即“厄尔尼诺”潮流。

厄尔尼诺暖流,太平洋一种反常的自然现象,在南美洲西海岸、南太平洋东部,自南向北流动着一股著名的秘鲁寒流。每年的11月至次年的3月正是南半球的夏季,南半球海域水温普遍升高,向东流动的赤道暖流得到加强。恰逢此时,全球的气压带和风带向南移动,东北信风越过赤道受到南半球自偏向力(也称自转偏向力)的作用,向左偏转成西北季风。西北季风不但削弱了秘鲁西海岸的离岸风——东南信风,使秘鲁寒流冷水上泛减弱甚至消失,而且吹拂着水温较高的赤道暖流南下,使秘鲁寒流的水温反常升高。这股悄然而至、不固定的洋流被称之为“厄尔尼诺暖流”。

拉尼娜是西班牙语“La
Nia”的音译,La是*性定冠词,Nia是小女孩,圣女的意思,是与厄尔尼诺现象相反,也称为“反厄尔尼诺”或“冷事件”,它是指赤道附近东太平洋水温反常下降的一种现象,表现为东太平洋明显变冷,同时也伴随着全球性气候混乱,总是出现在厄尔尼诺现象之后。

我国有漫长的海岸线,广大的领海,众多的
岛屿,为了发展海产捕捞和养殖,开发海洋资源,为了发展海上贸易及保卫祖国的海疆,应大力发展海洋研究,开发海岛,增加海岛气象观测点,建立遥测气象站,做好民用和**气象服务。

有人参加过河南省气象局的招聘考试吗?

如果是与其他事业单位分开考,您所求岗位又是 气象类的话,一般都考天原、大物、行测吧,而且一般情况下都是选择题。这是大部分省的情况,河南省的我也不是很清楚,希望对你有帮助。加油!

振动传感器检测方法有哪些?

  现在科技发展日新月异,每天都会有新事物的产生,尤其是在现在工业上,更加趋向于数字化和信息化,工艺上测试系统目前最先进的检测方法是振动传感器,那振动传感器是怎么进行检测的呢?测试方法有哪些呢?

  振动传感器的检测方法有哪些?

  振动传感器最突出的优势就是多功能性、智能化以及数字化,振动传感器在工程中检测方法有很多种,今天我们主要按照测量方法中的一些参数,还有测量过程中的一些物理性质分为以下三种:

  第一种方法是是机械式的,测量过程中把振动的参量转换成一些机械信号,这些信号经过一定的放大处理后,再进行测量以及记录。测量过程中比较常用的仪器主要有杠杆式测振仪,还有盖格尔测振仪,这种测量的频率是比较低的,而且也不是非常精确,但是在一些现场进行测试的时候是最简单的方法。

  第二种方法是光学式的,这种测试不再把振动的参数转换成机械信号,而是把这些参量转换成光学信号,然后这些信号经过系统放大处理之后就可以显示和记录了,读数的时候使用比较多的是显微镜还有激光测振仪。

  第三种方法是电测,同样,这种就是把振动的参数转换成电信号,然后经过电子线路进行显示和记录。电测发是应用最广泛的一种方法,因为,电测法把振动量转为为了电动势、电荷还有其他的电量,之后才进行的测试,这样更加准确一些。

  上边介绍的三种检测方法虽然物理性质是不相同的,但是测量系统基本相同,有拾振环节,就是把振动量转换成其他信号的这个环节,完成需要使用传感器;测量电路,要根据每一种传感器的各种变换原理还设计;信号分析以及显示记录环节,记录的时候可以记录在磁带上,然后再经过一系列的处理得到最终的结果。

  振动传感器主要有相对式,还有电涡流式、电感式、电容式以及惯性式、压电式、阻抗式、电阻应变式和激光式等等,每一种使用的技术都不同,性能特点有差异,而且适用的范围也不同。

  以上就是为您介绍的的振动传感器检测的几种方法,希望对您有帮助,振动传感器更加的智能化、数字化,为工业上带来更多便利。

振动测量有几种主要方法?

振动频率是指机械部件振荡的速率,振动频率越高,振荡越快。振动频率可以通过数振动部件在每秒中的振荡循环数来确定其频率。对振动频率的测量方法,主要是用比较法和直接读数法两种。
(一)比较法
比较法测量振动频率就是用同类的已知量频率与被测的未知量频率进行比较,从而确定被测频率的大小。常用的方法有以下几种:
1、李萨育图形法
李萨育图形法测量振动频率的原理是把已知频率的电信号和被测振动通过机电转换装置(测振传感器)转换的未知频率的电信号输出,经过放大器输入到示波器的z轴,示波器的y轴接信号发生器的已知频率信号,这时在示波器荧光屏上就会出现一个图形,这就是李萨育图形。如果被测振动频率与信号发生器的频率不相同时,图形就会变化不定。如果调整信号发生器的频率使其与被测振动频率成整数倍时,示波器上就会出现稳定的图形,然后再根据图形的形状来确定未知振动的频率值。
用李萨育图形法测频率,其测量精度取决于信号发生器频率指示精度以及图形稳定性程度。因此,用这种方法测量振动频率要求示波器和振荡器的工作频率范围要大于被测振动频率范围,在测量中要注意把图形调稳定后再读数。
2、录波比较法
录波比较法是通过传感器将被测机械振动转换成电信号,经过适当的放大后接到记录仪器上,在刻有标准时标和幅度大小的记录纸上,把振动的波形记录下来,然后以一定时标内记录的波形数来确定振动频率。这种方法在工程测量中较为常见。
3、闪光测频法
闪光测频法是用闪光仪来测量频率。闪光仪主要由一个频率可调的电脉冲发生器和一闪光灯组成。脉冲电流使灯泡按已知频率闪光来照亮振动物体,如果闪光频率正好和物体的振动频率一样时,当物体每次被照亮,振动物体正好振动到同一位置,看起来就好像物体不振动了,这时从闪光仪上读出的闪光频率就是振动物体的振动频率。
(二)直接读数法
用直接读数法测定物体振动频率一般有两种方法:一种是用指针式的频率表;另一种是用数字式的频率计。这两种方法的共同特点是把被测的机械信号转换为电信号,然后再经过放大指示出来。随着晶体管和集成电路器件的不断发展,目前多数采用数字式频率计来测量频率。这种方法具有测量精度高、稳定性能好等优点。在使用数字频率计测量频率时应注意阻抗匹配,应保证传感器的输出信号一定要大于数字式频率计的触发信号。如果传感器的输出信号太小,则应在传感器与频率计之间加一放大器,信号通过放大器放大后再送入数字式频率计,否则频率计就不能正常工作,即使有指示也不准确。除此之外,还要注意当振动波形失真太大时,要滤波后再调频。
在机械设备中,每一个运动着的零部件都有其特定的固有频率和振动频率,我们可以通过分析设备的频率特征来判断设备的工作状态。若不了解设备的结构和运动零部件的振动频率,就不能确切地判断设备的故障。因此,设备振动频率的计算和特征频率的检测,是故障诊断工作的重要环节。

2021年取得的辉煌成就有哪些?

具体如下:

一、我国脱贫攻坚战取得了全面胜利。

全国脱贫攻坚总结表彰大会于2021年2月25日上午在北京人民大会堂隆重举行。经过八年持续奋斗,我国如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽。为全面建成小康社会作出了重大贡献,为开启全面建设社会**现代化国家新征程奠定了坚实基础。

二、中国“天问一号”火星探测器携“祝融号”火星车成功着陆火星。

5月15日,中国火星探测器天问一号携祝融号火星车成功在火星乌托邦平原南部着陆。美国太空探索技术公司(SpaceX)创办人埃隆·马斯克在社交媒体上对于这一消息表示祝贺。

在新华社海外社交媒体的相关报道界面,马斯克留言称:“恭喜!!(着陆)火星是非常困难的。”

在马斯克之前,欧洲航天局、俄罗斯航天局公开祝贺了中国航天器成功**火星,而美国航天局副局长则通过个人推特表达了祝贺。

在当地时间15日下午,欧洲航天局在社交媒体平台上转发了CGTN有关祝融号火星车成功着陆火星的报道,并向“天问一号”火星探测任务团队表示祝贺。

三、国家正式**三胎政策。

2021年8月20日,全国****会会议表决通过了关于修改人口与计划生育法的决定。修改后的人口计生法规定,国家提倡适龄婚育、优生优育,一对夫妻可以生育三个子女。国家采取财政、税收、保险、教育、住房、就业等支持措施,减轻家庭生育、养育、教育负担。

四、苏炳添在东京奥运会男子100米半决赛中以9.83秒刷新亚洲纪。

8月1日晚,东京奥林匹克体育场里,代表着“中国速度”的苏炳添在半决赛中跑出9秒83,成功晋级决赛!创造亚洲纪录!成为电子计时时代第一位闯入奥运百米决赛的亚洲选手!

五、冬运会开始倒计时。

2021年9月17日,北京冬奥会、冬残奥会发布主题口号——“一起向未来”。10月18日,北京冬奥会火种在希腊成功点燃。10月20日,北京冬奥会火种抵达北京。11月15日,2022年冬奥会和冬残奥会主题口号推广歌曲《一起向未来》全新MV在全平台正式上线。

12月31日晚,北京2022年冬奥会和冬残奥会颁奖元素正式发布。2022年1月17日,北京冬奥组委发布北京冬奥会竞赛日程终版。1月22日,国际奥委会****抵达北京开始相关活动。

什么是海浪谱?

海面上的波浪在深海处传播的速度总是比浅海处的传播速度快,越是近海岸,海水越浅,波浪的速度越慢。若用虚线AB表示海岸附近深水域与淡水域的分界线,那么在深水域中,海浪在第1、2、3……11秒走过的距离较大(因为速度快),因此,线条之间的间隔大;在浅水域中,同样花费1秒钟时间,海浪经过的距离短,表现为线条之间的间隔小。因此,在分界线处发生了海浪的波长和传播方向的改变,海浪的传播方向变得渐渐垂直于海岸线了。由于越靠近海岸的海水越浅,因此,海浪的速度也渐渐慢下来,这就使它的传播方向越来越垂直于海岸线。当我们站在海岸面向大海时,由于看到的海浪都是以垂直于海岸线的方向一排排袭来,我们就感到海浪是迎你而来的。

在远离海岸的大海深处,海浪的行进方向取决于海风与海流的方向,并不一定朝观察者迎面而来。

海浪可视作由无限多个振幅不同、频率不同、方向不同、相位杂乱的组成波组成。这些组成波便构成海浪谱。此谱描述海浪能量相对于各组成波的分布,故又名“能量谱”。它用于描述海浪内部能量相对于频率和方向的分布,为研究海浪的重要概念。通常假定海浪由许多随机的正弧波叠加而成。不同频率的组成波具有不同的振幅,从而具有不同的能量。设有圆频率ω的函数S(ω),在ω至(ω+ω)的间隔内,海浪各组成波的能量与S(ω)ω成比例,则S(ω)表示这些组成波的能量大小,它代表能量对频率的分布,故称为海浪的频谱或能谱。同样,设有一个包含组成波的圆频率ω和波向θ的函数S(ω,θ),且在ω至(ω+ω)和θ至(θ+ω)的间隔内,各组成波的能量和S(ω,θ)ωθ成比例,则S(ω,θ)代表能量对ω和θ的分布,称为海浪的方向谱。

海浪谱不仅表明海浪内部由哪些组成波构成,还能给出海浪的外部特征。比如,理论上可由谱计算各种特征波高和平均周期,利用这些特征量连同波高与周期的概率密度分布,可推算海浪外观上由哪些高低长短不同的波所构成。若已知海浪的谱,海浪的内外结构都可得到描述,因此谱是非常有用的概念。事实上,海浪的研究(包括许多应用问题)大多和谱有关。