今天鞋百科给各位分享下行波束赋形包含哪些步骤的知识,其中也会对波束成形的基本原理(波束成形的基本原理有哪些)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

波束成形的基本原理

波束成形,源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。 例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。如果要采用波束成形技术, 前提是必须采用多天线系统。例如,多进多出(MIMO),不仅采用多接收天线,还可用多发射天线。由于采用了多组天线,从发射端到接收端无线信号对应同一条空间流(spatial streams), 是通过多条路径传输的。在接收端采用一定的算法对多个天线收到信号进行处理,就可以明显改善接收端的信噪比。即使在接收端较远时,也能获得较好的信号质量。MIMO可大大提高网络传输速率、覆盖范围和性能。当基于MIMO而同时传递多条**空间流时,系统的吞吐量可成倍地提高。MIMO系统支持空间流的数量取决于发送天线和接收天线的最小值。如发送天线数量为3,而接收天线数量为2,则支持的空间流为2。在市场上,经历了三年3×3模式的量产磨合期后,今年4X4模式崭露头角,立刻引起了业界重视。

lte波束赋形怎么实现

最小八根物理天线

波束成形的基本原理

软件支持beamfirming

波束赋形的波束赋形原理

在发射端,波束赋形器控制每一个发射装置的相位和信号幅度,从而在发射出的信号波阵中获得需要相长和相消干涉模式。在接收端,不同***接收到的信号被以一种恰当的方式组合起来,从而获得期盼中的信号辐射模式。以水下声纳发射为例,我们希望向远处的船只发送一束集中尖锐的声纳信号。如果声纳发射装置的每个声纳发生器同时向一艘船发声纳信号,由于远方船只的方位角度,有的声纳发射器的信号先到达船只,有的声纳发射器的信号后到达船只,无法做到让所有声纳信号发生器的信号同时到达这条船只。有了波束赋形技术,就可以调整不同声纳发生器的信号发射时间(离船远的先发信号,离船近的后发信号),这样,所有的声纳信号就能同时击中船只,获得一个强大的声纳脉冲信号击中船只的效果。在被动式声纳系统或者主动式声纳的接收端,波束赋形技术为不同的水下听音器收集到的信号加上不同的时延(离开目标最近的水下听音器加上最长的时延),这样就能同时听到所有水下听音器的声音,就像声音是来自同一个水下听音器,从而获得最佳的效果。1. 系统模型根据应用场合的不同,一般可以将波束赋形算法分为上行链路应用以及下行链路应用。无论是哪种情况,总可以用一个时变矢量(MIMO)信道来描述用户端与基站端的信号关系。对于上行链路,多个发射信号实质上是K个用户设备同时发送的信号,基站则使用多个天线单元接收信号,对其进行处理和检测,这时发送端的信号分配仅在各个支路分别进行;对于下行链路,基站仍可能使用多个天线单元向特定用户发射信号,但用户设备使用单天线检测与其有关的信号,这时接收部分降为一维,信号组合也仅对于单路信号进行。根据系统模型,就可以描述发送端的原始信号与接收端实际接收信号之间的关系,通常根据研究重点的不同,对于原始信号以及实际接收信号的位置会有不同的定义。对于波束赋形技术,一般其研究的范围从发送端扩谱与调制单元的输出端,到接收端解扩与解调单元的输入端,而研究过程中又常将信号分配单元输出端到信号组合单元输入端之间的部分合并,统称为无线移动信道,由于无线移动通信环境的极度复杂,无法得到其输入输出关系的确切描述,一般采用大量测量和理论研究相结合的方法,使用有限的参数描述该信道。采用这种方法后,就可以得到受干扰有噪信号与原始信号的关系,并据此在一定程度上恢复信号。因此,波束赋形的一般过程为:⑴根据系统性能指标(如误码率、误帧率)的要求确定优化准则(代价函数),一般这是权重矢量与一些参数的函数;⑵采用一定的方法获得需要的参数;⑶选用一定的算法求解该优化准则下的最佳解,得到权重矢量的值。可以发现,由于通信环境复杂,上述过程的每一阶段都可有不同的实现方案,因此产生了大量的波束赋形算法,如何衡量和比较其性能也成为波束赋形技术研究的一个重要方面。

什么是波束赋形它的作用是什么

波束赋形

就是通过调整阵列天线各阵元的激励,来使天线波束方向图形状变为指定的波束形状。

波束形成技术及原理

在空间传播过程中,无线信号的质量会出现衰减。这种被称之为“路损”(path-loss)的衰减现象会对通信系统产生巨大的影响。特别是对于毫米波段的5G通信系统,高达几十dB的信号衰减可能会导致系统无**常工作。在这种情况下,波束形成技术就可以大显身手,有效对抗路损。

研究人员在很久之前就已发现:多天线通信可以提高无线信号的传输质量。无线信号在空间传播如同船在水中行驶,路损就相当于水对船产生的阻力;天线以一定功率发送无线信号,如同船桨克服水阻推动船前行。

传统基站的天线数目少,无线信号传输质量就有限。这一点与独排或双桨的行船方式类似,由于桨少、人少、力量小而导致行船速度缓慢。

波束形成技术通过调节各天线的相位使信号进行有效叠加,产生更强的信号增益来克服路损,从而为5G无线信号的传输质量提供了强有力的保障。

扩展资料

波束中频段波束,比如C波段,L波段,KU波段等,这些是指频率,频率波束包括在方位波束之中。方位波束,也就是亚洲波束东北亚波束太平洋波束这些,是指卫星上一个天线中多个馈点发射的型号,或者说有多个天线,他们向着地球上不同的位置发射。

比如面向亚洲发射的天线,其在亚洲位置的信号强度,肯定是最高的,如果去太平洋地区接收可能没那么强信号,甚至弱到根本接收不到;所以就划分了这些波束。

而每个天线,连接着转发器前面的控制电路,所以每个天线所连接的转发器一般都是不一样的,所以转发的内容和信号也有所不同。

参考资料来源:百度百科-波束

多天线系统:发射分集与波束赋形有什么差别?

发射分集是利用了路径不同,因此衰落不相关的原理,让多根天线尽量不相干(拉开距离,距离大于10倍波长),从而抵消信号的部分衰落。另外一种办法是基于极化分集,也就是两个天线的极化方向垂直。这种情况下,天线的距离可以比较近。 波束赋形是将多根天线指向同一方向,相当于提**线的增益,强化信号强度。从这个意义上说,现在所有的天线都是波束赋形的,只是固定波束赋形,而不像智能天线那样波束的方向可调。为此,多根天线必须尽量相干(距离小于波长)。 发射分集通常是2天线,更多的天线会变得很复杂;波束赋形通常是8天线。另外,目前的8天线已经采用双极化的8天线,也就是所谓的4+4,4个同极化的天线一组,其实是发射分集和波束赋形的合体。

波束赋形的技术背景

波束赋形的目标是根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。具体地说,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。因此,首先需要建立系统模型,描述系统中各处的信号,而后才可能根据系统性能要求,将信号的组合或分配表述为一个数学问题,寻求其最优解。关于波束赋形的基本原理,可以首先考虑自由空间中电磁波的远场辐射情况。(1)当只存在单个天线振子时,以同极化方向从各个角度对电场振幅进行观测时,信号是各向同性衰减的,即不存在方向选择性。(2)如果增加一个同极化方向的振子,且两个振子处于同一位置时,即使两个天线发射信号可能存在一定的相差,但从任何角度观测,两列波的相差并不随观测角度的变化而发生变化,因此信号仍然不存在方向选择性。(3)如果增加一个同极化方向的振子,且两个振子保持一定间隔,则两列波之间会发生干涉现象,即某些方向振幅增强,某些方向振幅减弱(振幅增强部分的能量来自于振幅减弱部分)。出现上述现象的原因可由图3-23解释,假设观测点距离天线振子很远,可以认为两列波到达观测点的角度是相同的。此时两列波的相位差将随观测角度的变化而变化,在某些角度两列波同相叠加导致振幅增强,而在某些方向反相叠加导致振幅减小。因此,如果能够根据信道条件,适当地控制每个阵元的加权系数,就有可能在增强期望方向信号强度的同时,尽可能降低对非期望方向的干扰。对于TDD系统,可以方便地利用信道的互易性,通过上行信号估计信道传播向量或DoA(Direction-of-Arrival)并用其计算波束赋形向量。对于FDD系统,也可以通过上行信号估计DoA等长期统计信息并进行下行赋形。传统意义上的波束赋形或智能天线特指基于小间距(如阵元间距为波长/2)的单数据流空域预处理过程,而预编码则更多地偏重于基于大间距天线阵的多数据流空间复用预处理过程。实际上,从广义角度考虑,波束赋形和预编码都属于阵列信号的预处理技术,它们所使用的算法可以是完全相同的,而波束赋形技术在无线接入网中也不再仅限于单流传输。在TD-LTE R8和R9中,一般习惯于将基于专用导频进行业务信道解调的传输方式称为波束赋形(如传输模式7和8),而将基于公共导频和下行控制信息中的Precoding Information域进行业务信道解调的传输方式称为预编码。波束赋形技术已经在TD-SCDMA系统中得到了成功的应用,在TD-LTE R8中也采用了波束赋形技术。在TD-LTE R8的PDSCH传输模式7中定义了基于单端口专用导频的波束赋形传输方案。TD-LTE R9中则将波束赋形技术扩展到了双流传输方案中,通过新定义的传输模式8引入了双流波束赋形技术,并定义了新的双端口专用导频与相应的控制、反馈机制。

lte波束赋形怎么实现

波束赋形beamforming是应用传感器阵列实现定向信号发送或接收的信号处理技术。波束赋形技术能够在某个特定角度(目标用户)增强信号,在另一个特定角度(非目标用户,或者障碍物)减弱信号。波束赋形能够同时在发送端和接收端实现空间的选择性。相比具有全向接收/发送天线的改善被称为接收/发射增益(或损失)。
Beamforming利用了物理学上的干涉( interference)原理
干涉是两列或两列以上的波在空间中重叠时发生叠加从而形成新波形的现象。例如采用光学分束器将一束来自单色点光源的光分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。
两列波在同一介质中传播发生重叠时,重叠范围内介质的质点同时受到两个波的作用。若波的振幅不大,此时重叠范围内介质质点的振动位移等于各别波动所造成位移的矢量和,这称为波的叠加原理。若两波的波峰(或波谷)同时抵达同一地点,称两波在该点同相,干涉波会产生最大的振幅,称为相长干涉(constructive interference 建设性干涉);若两波之一的波峰与另一波的波谷同时抵达同一地点,称两波在该点反相,干涉波会产生最小的振幅,称为相消干涉(destructive interference摧毁性干涉)。