今天鞋百科给各位分享排序算法用来干什么用的的知识,其中也会对快速排序算法能运用到什么领域有什么作用(快速排序算法的基本原理)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
快速排序算法能运用到什么领域有什么作用
很多时候查找的前提就是排序,而快排速度相当快,属于原地排序即节省额外空间。许多查找算法都是基于有序表的。
排列是什么意思
排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。特别地,当m=n时,这个排列被称作全排列(all permutation)。
排列(permutation),数学的重要概念之一。有限集的子集按某种条件的序化法排成列、排成一圈、不许重复或许重复等。从n个不同元素中每次取出m(1≤m≤n)个不同元素,排成一列,称为从n个元素中取出m个元素的无重复排列或直线排列,简称排列。
重复排列
重复排列是排列的一种。从n个不同的元素中,每次取出m个元素,但同一元素可以重复取出,排成一列,称为一个可重复排列。在作一个可重复排列时,如果元素a被取上几次,排列中它就出现几次,但同一元素的位置交换不能认为是不同排列。
两个可重复排列相同当且仅当所取的元素相同,并且同一元素取的次数相同,在排列中占的位置也相同。从n个元素中可重复地选取m个元素的可重复排列个数称为可重复排列种数。
排序法的排序法的定义
排序法是指根据被评估员工的工作绩效进行比较,从而确定每一员工的相对等级或名次。等级或名次可从优至劣或由劣到优排列。比较标准可根据员工绩效的某一方面(如:出勤率、事故率、优质品率)确定,一般情况下是根据员工的总体工作绩效进行综合比较。排序法就是把部门的员工按照优劣排列名次,从最好的一直排到最后一名法。 我们根据什么指标来排的呢?比如,销售部门人员就可以制定一个销售利润的指标,根据这一指标进行排序,用以衡量这个部门的销售人员,谁拿的单子总和后利润最大,他的排序就最靠前,就是第一名。其次第二名、第三名,谁的利润最小排在最后一名。也许今年排行最后一名就可能被末位淘汰了。排序法的重点是:在部门里选取一个衡量因素。比如,针对业务员开发新客户的数量,也可以用来排序。好处是什么?就是针对业绩来说,这个部门谁好谁坏,一目了然,给你加薪、发奖金,还有提升谁,不提升谁,淘汰谁,培训谁,可以做出一个非常公正的判断。它的坏处是什么?坏处就是太简单了。每一次排序只能找一项最基本因素。有时业务员考虑销售的利润非常大,而放弃了开发新客户,只是维持一两个老客户,他能得到很高的利润,但是他不开发新客户。这是排序法一个比较短视的地方。排序法的特点是:很大程度上取决于部门经理对员工的看法。所以,有时会有一些误区。操作简单,仅适合正在起步的企业采用。
用C语言编写一个快速排序算法 输入10个数
1、“快速排序法”使用的是递归原理,下面一个例子来说明“快速排序法”的原理。首先给出一个数组{53,12,98,63,18,72,80,46, 32,21},先找到第一个数--53,把它作为中间值,也就是说,要把53放在一个位置,使得它左边的值比它小,右边的值比它大。{21,12,32, 46,18,53,80,72,63,98},这样一个数组的排序就变成了两个小数组的排序--53左边的数组和53右边的数组,而这两个数组继续用同样的方式继续下去,一直到顺序完全正确。一般来说,冒泡法是程序员最先接触的排序方法,它的优点是原理简单,编程实现容易,但它的缺点就是速度太慢。2、快速排序代码:
#includevoid quicksort(int a[],int left,int right){ int i,j,temp; i=left; j=right; temp=a[left]; if(left>right) return; while(i!=j) { while(a[j]>=temp&&j>i) j--; if(j>i) a[i++]=a[j]; while(a[i]i) i++; if(j>i) a[j--]=a[i]; } a[i]=temp; quicksort(a,left,i-1); quicksort(a,i+1,right);}void main(){ int a[]={53,12,98,63,18,72,80,46,32,21}; int i; quicksort(a,0,9); /*排好序的结果*/ for(i=0;i<10;i++) printf("%4d\n",a[i]);}
栈和队列的作用是什么?它们主要可以应用在哪些方面?
栈和队列都属于一位链表,栈是后进先出,进和出都是在同一端进行,就好像一筒羽毛球,只有把上面拿出来,下面的才能拿出来;队列是先进先出的,进和出分别在不同的端进行,比如排队的人,排在前面的人先到柜台办理业务,后面来的人后得到服务。
栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底。
最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。栈具有记忆作用,对栈的插入与删除操作中,不需要改变栈底指针。
扩展资料:
在计算机系统中,栈则是一个具有以上属性的动态内存区域。程序可以将数据压入栈中,也可以将数据从栈顶弹出。在i386机器中,栈顶由称为esp的寄存器进行定位。压栈的操作使得栈顶的地址减小,弹出的操作使得栈顶的地址增大。
栈在程序的运行中有着举足轻重的作用。最重要的是栈保存了一个函数调用时所需要的维护信息,这常常称之为堆栈帧或者活动记录。
排序算法的应用
快排
procedure sort(l, r : integer);
var i, j, x, y : integer;
begin
i := l; j := r;
x := a[l];
repeat
while a[i] < x do inc(i);
while x < a[j] do dec(j);
if i <= j then begin
y := a[i];
a[i] := a[j];
a[j] := y;
inc(i); dec(i);
end;
until i > j;
if i < r then sort(i, r);
if l < j then sort(l, j);
end;
pascal的一个排序程序段
常用的排序算法都有哪些?
排序算法 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算**依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
***排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对於大的、乱数串列一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
冒泡排序
654
比如说这个,我想让它从小到大排序,怎么做呢?
第一步:6跟5比,发现比它大,则交换。564
第二步:5跟4比,发现比它大,则交换。465
第三步:6跟5比,发现比它大,则交换。456