今天鞋百科给各位分享sinfx的最大值怎么算的知识,其中也会对理工学科,数学,学习(理工是不是数学好)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
理工学科,数学,学习
理工科肯定要学习数学,考研要考数学二
三角函数最大值最小值怎么求
1、化为一个三角函数
如:f(x)=sinx+√3cosx=2sin(x+π/3)
最大值是2,最小值是-2
2、利用换元法化为二次函数
如:f(x)=cosx+cos2x=cosx+2cos²x-1=2t²+t-1 【其中t=cosx∈[-1,1]】
则f(x)的最大值是当t=cosx=1时取得的,是2,最小值是当t=cosx=-1/4时取得的,是-9/8
扩展资料寻找函数最大值和最小值
找到全局最大值和最小值是数学优化的目标。如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。
因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。
三角函数的定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²+b²) , c+√(a²+b²)]
周期T=2π/ω
参考资料:百度百科-三角函数
三角函数最大值最小值怎么求
1、化为一个三角函数
如:f(x)=sinx+√3cosx=2sin(x+π/3)
最大值是2,最小值是-2
2、利用换元法化为二次函数
如:f(x)=cosx+cos2x=cosx+2cos²x-1=2t²+t-1 【其中t=cosx∈[-1,1]】
则f(x)的最大值是当t=cosx=1时取得的,是2,最小值是当t=cosx=-1/4时取得的,是-9/8
扩展资料寻找函数最大值和最小值
找到全局最大值和最小值是数学优化的目标。如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。
因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。
三角函数的定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²+b²) , c+√(a²+b²)]
周期T=2π/ω
参考资料:百度百科-三角函数
怎么求正弦函数最大值
y=Asin(wx+f)的最大值为A,最小值为-A,y=Acos(wx+f)函数最大值也是A,最小值也是-A,[A>0,若A<0就反一下].
y=Asin(wx+f)的最大值为A,最小值为-A,y=Acos(wx+f)函数最大值也是A,最小值也是-A,[A>0,若A<0就反一下].
怎样求sin函数的最大值
sin最大不是1吗?sin前面有系数就再乘系数。还要结合题设看有没有限制条件能不能取到1那个地方。
如果满意的话请及时采纳哦。
fx=2^x-2的最大值怎么算,要详细
这个函数是发散的吧,最大值应该是x取无线大时,fx=无限大吧。你把函数图像画出来不就看出来了么
好久不做数学了,这是高几的题啊?你看看对不对,如果f(x)大于g(x)的最大值,那么f(x1)≥g(x2),所以你的题目简化为求g(x)的最大值,g(x)是单调递增函数,所以g(x)的最大值在x2=1时,即g(x2)=g(1)=0,所以f(x)>0就行。
三角函数的最大值怎么求?
y=√5sin(x+φ)
φ=tanb/a=tan1/2
y=y=√5sin(x+arctan1/2)
最大值为√5
规律:
y=asinx+bcosx=√(a^2+b^2)sin(x+φ)
φ=tanb/a
这是高中的知识呀,高一的,我刚学完,这是结论,老师让我们记住
原文在http://****zx98***m/Article/UploadFiles/200412/20041213191036584.doc
三角函数最值问题类型归纳
三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现.其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程).题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型.掌握这几种类型后,几乎所有的三角函数最值问题都可以解决.
1.y=asinx+bcosx型的函数
特点是含有正余弦函数,并且是一次式.解决此类问题的指导思想是把正,余弦函数转化为只有一种三角函数.应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=.
例1.当-≤x≤时,函数f(x)=sinx+cosx的(D)
A,最大值是1,最小值是-1B,最大值是1,最小值是-
C,最大值是2,最小值是-2D,最大值是2,最小值是-1
分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可.
2.y=asin2x+bsinxcosx+cos2x型的函数
特点是含有sinx,cosx的二次式,处理方式是降幂,再化为型1的形式来解.
例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合.
解:y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+1+cos2x
=2+sin(2x+)
当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π,k∈Z}.
3.y=asin2x+bcosx+c型的函数
特点是含有sinx,cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解.
例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M.
解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,
令sinx=t,则y=-(t+a)2+a2+1-a,(-1≤t≤1)
(1)若-a1时,在t=-1时,取最大值M=a.
(2)若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a.
(3)若-a>1,即a0,
y2=4cos4sin2
=2·cos2·cos2·2sin2
所以0注:本题的角和函数很难统一,并且还会出现次数太高的问题.
6.含有sinx与cosx的和与积型的函数式.
其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用
(sinx+cosx)2=1+2sinxcosx进行转化,变成二次函数的问题.
例6.求y=2sinxcosx+sinx+cosx的最大值.
解:令sinx+cosx=t(-≤t≤),则1+2sinxcosx=t2,所以2sinxcosx=t2-1,
所以y=t2-1+t=(t+)2-,
根据二次函数的图象,解出y的最大值是1+.
相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了.并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题.希望同学们在做有关的问题时结合上面的知识.
http://****maths168***m