今天鞋百科给各位分享有理数的标准是的知识,其中也会对这是有理数还是无理数? 实数,有理数,无理数,辨别的标准是什么?进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

这是有理数还是无理数? 实数,有理数,无理数,辨别的标准是什么?

无理。有根号的,开不出来的都是。,有理数无理数都是实数。

有理数的定义和性质以及包括什么还有概念

1、有理数定义:有理数为整数(正整数、0、负整数)和分数的统称 。

这是有理数还是无理数? 实数,有理数,无理数,辨别的标准是什么?

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

2、有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

3、有理数包括:整数、分数。直观表示可以看下图:

扩展资料:

有理数运算定律:

1、加法运算律:

(1)加法交换律:两个数相加,交换加数的位置,和不变,即 (a+b)+c=a+(b+c)。

(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 a+b=b+a。

2、减法运算律:

减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。

3、乘法运算律:

(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即 ab=ba。

(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 (ab)c=a(bc)。

(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(a+b)=ab+ac。

参考资料:百度百科_有理数

哪些是自然数,整数,分数,正数,负数,有理数

非负整数, 即用数码0,1,2,3,4,……所表示的数,也就是除负整数外的所有整数,通常也被称为自然数。
整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。
若一个数大于零,则称它是一个正数。正数有无数个,包括正整数,正分数和正无理数。在数轴上表示正数的点都在数轴上零点的右边。比0大的数叫正数[positive number],0本身不算正数。正数前面常有一个符号“+”,通常可以省略不写。
负数是数学术语,负数与正数表示意义相反的量。负数用负号(Minus Sign,即相当于减号)"-"和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,最早记载负数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小。
整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数(rational number)。有理数的小数部分有限或为循环。不是有理数的实数遂称为无理数。

有理数详细分类表

有理数的分类是什么

有理数有几种分类,分别是什么

有理数的分类:

(1)正有理数

(2)负有理数

(3)0

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

扩展资料:

有理数运算定律

加法运算律:

1、加法交换律:两个数相加,交换加数的位置,和不变,即 。

2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。

减法运算律:

减法运算律:减去一个数,等于加上这个数的相反数。即:

参考资料:百度百科-有理数