今天鞋百科给各位分享两个三角函数的周期怎么算的知识,其中也会对正弦函数的周期怎么算?(正弦函数的周期性怎么算)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
正弦函数的周期怎么算?
周期=2π/|ω
f(x)=Asin(ωx+ψ)
φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)
ω:决定周期(最小正周期T=2π/|ω|)
A:决定峰值(即纵向拉伸压缩的倍数)
正弦函数的性质:
(1)最值和零点
①最大值:当x=2kπ+(π/2) ,k∈Z时,y(max)=1
②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1
零值点:(kπ,0) ,k∈Z
(2)对称性
既是轴对称图形,又是中心对称图形。
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称
2)中心对称:关于点(kπ,0),k∈Z对称
如何求两个三角函数相加的周期
化成单三角函数,再求最小正周期。如,y=cosxsinx=1/2sin2x;T=2π/2=π。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
三角函数的周期怎么计算
正弦、余弦函数的周期为2π,正切函数周期为π先把所求的三角函数化成我们比较熟悉的形式,可以直接代入以下公式。
比如说可化成
y=sin(ωx+θ)+K,
则T=2π/ω;
y=cos(ωx+θ)+K,
则T=2π/ω;
y=tan(ωx+θ)+K,
则T=π/ω;
(其中ω,θ,ω均为实数)
f(x)=sin(ωx+φ)
T=2π/|ω|f(x)
=cos(ωx+φ)T
=2π/|ω|f(x)
=tan(ωx+φ)T
=π/|ω|f(x)
=cot(ωx+φ)T
=π/|ω|f(x)
=sec(ωx+φ)T
=2π/|ω|f(x)
=csc(ωx+φ)T
=2π/|ω|。
扩展资料
三角函数的周期通式的表达式:
正弦三角函数的通式:y=Asin(wx+t);余弦三角函数的通式:y=Acos(wx+t);
正切三角函数的通式:y=Atan(wx+t);余切三角函数的通式:y=Actg(wx+t)。
在w>0的条件下:A:表示三角函数的振幅;三角函数的周期T=2π/ω;三角函数的频率f=1/T:
wx+t表示三角函数的相位;t表示三角函数的初相位。