今天鞋百科给各位分享如何区分闭域闭集的知识,其中也会对请问什么是开集、连通集、开区域?进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
请问什么是开集、连通集、开区域?
设A是度量空间X的一个子集。如果A中的每一个点都有一个以该点为中心的邻域包含于A,则称A是度量空间X中的一个开集。
连通集: 若点集E内的任意两个点,都可用折线连接起来,且该折线上的点都属于 ,则称 为连通集。
开区域: 连通的开集称为区域或开区域。
扩展资料:
一、集合特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序
二、运算定律
交换律:A∩B=B∩A;A∪B=B∪A
结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
同一律:A∪∅=A;A∩U=A
求补律:A∪A'=U;A∩A'=∅
对合律:A''=A
等幂律:A∪A=A;A∩A=A
零一律:A∪U=U;A∩∅=∅
吸收律:A∪(A∩B)=A;A∩(A∪B)=A
参考资料来源:百度百科-开集
内点、外点、边界点、聚点,开集、闭集、连通集、区域、闭区域、有界集、**集,这特么有一毛钱意思么??
让我大概给你解释一下这一毛钱的意思吧。内点指的是存在一个该点的领域被包含在所给点集,则称该点是该点集的内点,外点指的是存在一个该点的领域完全在所给点集之外,则称该点为外点;边界点指的任做该点的领域,领域内都同时有外点和内点,则称该点为边界点;聚点则是对边界点和内点的统一定义。
以上三种是对点和平面点集关系的描述,而其他的所有名词都是一些特殊点集的名称。开集指的点集内全是内点;闭集指的是集合内的点既有内点还有边界点。
连通集可以直观的理解为没有被分割开的一个**的点集;而如果该连通集同时还是开集,则成为区域或开区域;对应的,该连通集如果同时还是闭集则成为闭区域。
有界集可以理解为有限大的点集,**集则相反。
如何判断一个区域属于有界,**,开区域,闭区域?
1、假定f是D->R的函数,如果存在实数M使得f(x)<=M对一切x∈D成立,那么称f有上界,M是f的一个上界。
类似地,如果存在实数m使得f(x)>=m对一切x∈D成立,那么称f有下界,m是f的一个下界。
如果f既有上界又有下界,那么称f有界,否则称f**。
2、[1、3 ]是闭区间,它包括边界的两个数,就是1—3的所以实数,这两个数1、3就是边界,如果是(1、3)的话,是开区间,不包括边界的1、3。
扩展资料例子:设E是平面上的一个点集,P是平面上的一个点,如果存在点P的某一邻域则称P为E的内点。如果点集E的点都是内点,则称E为开集。
连通的开集称为区域或开区域.例如:
开区域同他的边界一起称为闭区域。例如:
对于点集E如果存在正数K,使一切点与某一点A的距离不超过K,即对一切成立,则称E为有界点集,否则称为**点集。
例如:为有界闭区域。为**开区域。
谁能解释一下轰炸区域的设定有什么意义
增加游戏趣味性啊。比赛上可能是要保证主播的节目效果才去掉轰炸的,目的和70人开赛一样,减小意外阵亡的概率,不然落地成盒的和被轰炸炸死的就太憋屈了,保证大部分人是被打死的。平时就无所谓了,还能增加笑点