今天鞋百科给各位分享回归模型的bias怎么算的知识,其中也会对线性回归方程公式b怎么求(线性回归方程公式b怎么求出来)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
线性回归方程公式b怎么求
第一:用所给样本求出两个相关变量的(算术)平均值:x_=(x1+x2+x3+...+xn)/ny_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算 b : b=分子 / 分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中 ,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
扩展资料
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
参考资料:线性回归方程的百度百科
线性回归方程的b怎么求
线性回归方程的b的求法:
Y=aX+b
Q(a,b)=Σ[Yi-(aXi+b)]^2
∂Q/∂a= 2Σ[Yi-(aXi+b)](-Xi)=0
∂Q/∂b= 2Σ[Yi-(aXi+b)](-1)=0
整理后得到关于a、b的线性方程组:
Σ[XiYi-(aXi^2+bXi)]=0 -> aΣXi^2 + bΣXi = ΣXiYi (1)
Σ[Yi-aΣXi-bn]=0 -> aΣXi + bn = ΣYi (2)
式中:Xi、Yi为原始数据;n为数据个数(样本容量);Σ是求和符号.
对(1)、(2)两式都除以样本容量n,那么方程的各个系数就都具有明确的统计意义了:
ΣXi^2/n -- Xi 地均方值,记为:E(X^2)
ΣXi/n -- Xi 的平均值, 记为:E(X)
ΣXiYi/n -- XiYi乘积平均,记为:E(XY)
ΣYi/n -- Yi 的平均值, 记为:E(Y)
(1)、(2)变为:
a E(X^2) + b E(X) = E(XY) (3)
a E(X) + b n = E(Y) (4)
E(X^2),E(X),E(Y),E(XY)很容易算出来,代入(3)(4)就可以解出a、b来.
线性回归方程公式是什么?
线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。
线性回归方程公式求法:
第一:用所给样本求出两个相关变量的(算术)平均值:
x_=(x1+x2+x3+...+xn)/n
y_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)
分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_
分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算b:b=分子/分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
应用
线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
以上内容参考 百度百科-线性回归方程