今天鞋百科给各位分享计算机基础补码是怎么算的的知识,其中也会对计算机原码反码补码怎么算(计算机原码反码补码怎么算的)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

计算机原码反码补码怎么算

计算机中,并没有原码和反码,只是使用补码,代表正负数。

使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。

------------

比如钟表,时针转一圈,周期是 12 小时。

计算机原码反码补码怎么算

倒拨 3 小时,可以用正拨 9 小时代替。

9,就称为-3 的补数。

计算方法:12-3 = 9。

对于分针,倒拨 X 分,就可以用正拨 60-X 代替。

------------

如果,限定了两位十进制数 (0~99),周期就是 100。

那么,减一,就可以用 +99 代替。

  24-1 = 23

  24 + 99 = (1) 23

忽略进位,只取两位数,这两种算法,结果就是相同的。

于是,99 就是 -1 的补数。

其它负数的补数,大家可以自己求!

求出了负数的补数,就可用加法,代替减法了。

------------

计算机中使用二进制,补数,就改称为【补码】。

常用的八位二进制是:0000 0000~1111 1111。

它们代表了十进制:0~255,周期就是 256。

那么,-1,就可以用 255 = 1111 1111 代替。

所以:-1 的补码,就是 1111 1111 = 255。

同理:-2 的补码,就是 1111 1110 = 254。

继续:-3 的补码,就是 1111 1101 = 253。

。。。

最后:-128,补码是 1000 0000 = 128。

计算公式:负数的补码=256+这个负数。

正数,直接运算即可,不需要求补码。

   也可以说,正数本身就是补码。

------------

补码的应用如: 7-3 = 4。

用补码的计算过程如下:

    7 的补码=0000 0111

   -3的补码=1111 1101

--相加-------------

   得:  (1) 0000 0100 = 4 的补码

舍弃进位,只保留八位,作为结果即可。

这就是:使用补码,加法就代替了减法。

所以,在计算机中,有一个加法器,就够用了。

原码和反码,都没有这种功能。

------------

原码和反码,毫无用处。计算机中,根本就没有它们。

什么是补码,怎么计算

无论什么类型的数字,在计算机中,都是以“二进制代码”存储的。

下面按照八位二进制来说明,其它位数,自行脑补。

十进制数 0,存放的,就是二进制 0000 0000。

十进制数 +1,就加上 1,二进制是 0000 0001。

十进制数 +2,就再加 1,二进制是 0000 0010。

。。。

十进制数 +127,加 1加 1...,就加到了 0111 1111。

+127,这就是最大数值。

----------

负数怎么办? 你就从 0,依次递减吧。

十进制数 0,以二进制 0000 0000 存放。

十进制数 -1,就减去 1,得 1111 1111 = 255(十进制)。

十进制数 -2,就再减 1,得 1111 1110 = 254。

十进制数 -3,就再减 1,得 1111 1101 = 253。

。。。

十进制数 -128,减 1减 1...,得 1000 0000 = 128。

不要再减了,这就是最小值了。

(你再继续减,就是 0111 1111,这就是+127 了。)

因此,最小数就是-128。

----------

总结:

  零和正数:直接用二进制存放。

  负数:存放形式是【256+这个负数】。

这套存放格式,就是所谓的【补码】。

 

求【补码】,就是这么简单。

完全不用绕到“原码反码符号位”那么远。

可以用十进制来计算。如果需要二进制,你就再转换一下。

用这个方法,不涉及原码反码符号位,就少了不少麻烦事。

----------

为什么负数用补码存储?

 利用补码,可以把减法运算,转换成加法。

 (所以,在计算机中,有一个加法器,就够用了。)

例如,6-2 = 4,用补码运算如下:

    6 的补码是 0000 0110

 + -2 的补码是 1111 1110

-----------------

       (1) 0000 0100   (= 4 的补码)

 (括号中的 1,是进位,舍弃不要了。)

注意:

 如果运算结果超出了-128~+127 的范围,结果将是错的。

 这种现象称为“溢出”。

 再注意一下:进位,并不等于溢出。

---------

因为补码的这个特性,所以,在计算机中,只是使用补码存放数据。

而原码反码,在计算机中,都是不存在的。

原码反码 的用途,仅仅是用于“心算、笔算”。

其实,笔算的方法,并非只有“取反加一”。

另外,-128,有补码,但是却没有原码反码!

用“取反加一”来求-128 的补码,无异于缘木求鱼。

所以,大家,完全不必在原码反码 上浪费时间精力。

但是,考试怎么办?

呃 ...,还是别跟老师较劲,他怎么乱讲,你就怎么答吧。

计算机原码反码补码怎么算

计算机中,并没有原码和反码,只是使用补码,代表正负数。

使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。

------------

比如钟表,时针转一圈,周期是 12 小时。

倒拨 3 小时,可以用正拨 9 小时代替。

9,就称为-3 的补数。

计算方法:12-3 = 9。

对于分针,倒拨 X 分,就可以用正拨 60-X 代替。

------------

如果,限定了两位十进制数 (0~99),周期就是 100。

那么,减一,就可以用 +99 代替。

  24-1 = 23

  24 + 99 = (1) 23

忽略进位,只取两位数,这两种算法,结果就是相同的。

于是,99 就是 -1 的补数。

其它负数的补数,大家可以自己求!

求出了负数的补数,就可用加法,代替减法了。

------------

计算机中使用二进制,补数,就改称为【补码】。

常用的八位二进制是:0000 0000~1111 1111。

它们代表了十进制:0~255,周期就是 256。

那么,-1,就可以用 255 = 1111 1111 代替。

所以:-1 的补码,就是 1111 1111 = 255。

同理:-2 的补码,就是 1111 1110 = 254。

继续:-3 的补码,就是 1111 1101 = 253。

。。。

最后:-128,补码是 1000 0000 = 128。

计算公式:负数的补码=256+这个负数。

正数,直接运算即可,不需要求补码。

   也可以说,正数本身就是补码。

------------

补码的应用如: 7-3 = 4。

用补码的计算过程如下:

    7 的补码=0000 0111

   -3的补码=1111 1101

--相加-------------

   得:  (1) 0000 0100 = 4 的补码

舍弃进位,只保留八位,作为结果即可。

这就是:使用补码,加法就代替了减法。

所以,在计算机中,有一个加法器,就够用了。

原码和反码,都没有这种功能。

------------

原码和反码,毫无用处。计算机中,根本就没有它们。

计算机原码补码的计算

计算机原码补码的计算方法:

1、原码:在计算机中的机器字长的最高位(最左边)表示正负,0为正数,1为负数,原码就是最高位是符号位,其余位表示数值(绝对值)大小。

2、反码:正数的反码就是其本身(原码)不变,而负数的反码就是在负数原码的基础上符号位保持不变,其余位按位取反。

3、补码:正数的补码就是其本身(原码),而负数的补码就是在原码的基础上符号位保持不变其余位按位取反,然后再+1,即在反码的基础上+1。

总结:正数的原码、反码和补码都一样,都等于原码。负数的反码就是在原码的基础上符号位不变其余位按位取反,负数的补码就是在反码的基础上+1。

扩展资料:

原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。

原码不能直接参加运算,可能会出错。例如数学上,1+(-1)=0,而在二进制中00000001+10000001=10000010,换算成十进制为-2。显然出错了。所以原码的符号位不能直接参与运算,必须和其他位分开,这就增加了硬件的开销和复杂性。

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。

补码“模”概念的引入、负数补码的实质、以及补码和真值之间的关系所揭示的补码符号位所具有的数学特征,无不体现了补码在计算机中表示数值型数据的优势,和原码、反码等相比可表现在如下方面:

(1)解决了符号的表示的问题;

(2)可以将减法运算转化为补码的加法运算来实现,克服了原码加减法运算繁杂的弊端,可有效简化运算器的设计;

(3)在计算机中,利用电子器件的特点实现补码和真值、原码之间的相互转换,非常容易;

(4)补码表示统一了符号位和数值位,使得符号位可以和数值位一起直接参与运算,这也为后面设计乘法器除法器等运算器件提供了极大的方便。

参考资料:百度百科-原码、百度百科-补码